
Methodologies

Localization

• Algorithm Used: Adaptive Monte Carlo Localization (AMCL) utilizing particle filters.

• Particle Filter Mechanism:

• Maintains a set of particles representing possible robot poses.

• Prediction Step: Updates particles based on motion models using odometry data.

• Update Step: Adjusts particle weights by comparing LiDAR data to the existing 

map.

• Sensor Integration:

• LiDAR Data: Compares observed scans with predicted scans to redefine particle 

weights.

• Odometry Data: Provides motion estimates for particle prediction and movement 

modeling.

• Adaptive Resampling:

• Dynamically adjusts the number of particles using KLD-sampling for computational 

efficiency.

• Concentrates computational resources on the most probable robot locations.

• The robot can localize itself in a room with less than 21% error.

Navigation

• Navigation Stack: Nav2 for comprehensive path planning and control.

• Global Path Planning:

• Utilizes A* or Dijkstra’s Algorithm to compute optimal paths on the global costmap.

• Considers obstacle costs and robot kinematics in path formulation.

• Local Path Planning:

• Implements the Dynamic Window Approach (DWA) for real time obstacle 

avoidance and path following.

• Calculates feasible velocity commands within the robot’s dynamic constraints and 

environment.

• Costmap Management:

• Global Costmap: Represents the static environment derived from the SLAM-

generated map.

• Local Costmap: Continuously updated with live sensor data to account for dynamic 

obstacles.

• Obstacle Inflation: Adds safety buffers around obstacles based on the robot’s 

footprint and safety requirements.

• Recovery Behaviors:

• Clearing Rotations: Performs in-place rotations to reassess surroundings when 

navigation is impeded.

• Re-planning: Automatically generates new paths if obstacles are detected along 

the current trajectory.
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Figure 2: A picture of an apple orchard, exemplifying a location in 

which the robot developed in this research could be used.

Materials and Methods

Simulation

• The robot can be 
simulated using Gazebo 
and RVIZ

• Gazebo simulates the 
robot by generating 
data based on a 
simulated 
environment

Robot Setup

• Save disk image

• Upgrade to ROS 2 
Humble

Sensor Integration

• Re-pin power wire to 
make it compatible with 
the robot

• Mount using 3D printed 
component

Figure 3: Design of the 3D printed Mount 

used to mount the LiDAR.

Figure 1: Picture of the robot with the 

integrated sensor mounted on top.

Figure 4: RVIZ environment where the map is displayed. The map being 

displayed includes the costmap zones in blue and purple.
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Figure 5: Screenshot of a Gazebo Simulation of the robot in a simulated 

environment
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Abstract

• Goal: Build a base robotic platform capable of autonomous localization, 

mapping, and autonomous navigation for autonomous robotic apple harvesting.

• Methods: Setting up an Unmanned Ground Vehicle, integrating a 2D LiDAR and 

Running SLAM, localization, and navigation codes.

• Results: The robot can use the integrated LiDAR to create a 2D map of its 

location, localize itself within the map, and navigate through the map to a 

given goal. 

• Conclusions: This study contributes immensely to the field of agriculture by 

providing a robotic platform that can be used to automate agricultural tasks.

Methodologies

Simultaneous Localization and Mapping (SLAM)

• Algorithm Used: slam_toolbox with advanced scan matching and pose graph 

optimization.

• LiDAR Scan Matching:

• Employs Karto SLAM algorithms for aligning sequential LiDAR scans.

• Utilizes Iterative Closest Point (ICP) and Correlative Scan Matching for 

precise map building.

• Pose Graph Optimization:

• Constructs a pose graph where each node represents a robot pose.

• Implements Loop Closure Detection to correct drift by identifying 

previously visited locations.

• Applies Graph-Based Optimization techniques (e.g., SPA, GTSAM) for 

global map consistency.

• Map Generation:

• Produces a 2D occupancy grid map representing obstacles and free space.

• Allows adjustable map resolution and update rates to suit different 

environments.

Results
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