Advanced Localization Technologies for Autonomous Robotic Apple harvesting

Gabriel Basus, Advisor: Siavash Farzan Cal Poly College of Engineering Department of Electrical Engineering

Abstract

- **Goal:** Build a base robotic platform capable of autonomous localization, mapping, and autonomous navigation for autonomous robotic apple harvesting.
- **Methods:** Setting up an Unmanned Ground Vehicle, integrating a 2D LiDAR and Running SLAM, localization, and navigation codes.
- **Results:** The robot can use the integrated LiDAR to create a 2D map of its location, localize itself within the map, and navigate through the map to a given goal.
- **Conclusions:** This study contributes immensely to the field of agriculture by providing a robotic platform that can be used to automate agricultural tasks.

Materials and Methods

Simulation

- The robot can be simulated using Gazebo and RVIZ
- Gazebo simulates the robot by generating data based on a simulated environment

Robot Setup • Save disk image • Upgrade to ROS 2 Humble

Methodologies

Simultaneous Localization and Mapping (SLAM)

- Algorithm Used: slam_toolbox with advanced scan matching and pose graph optimization.
- LiDAR Scan Matching:
 - Employs Karto SLAM algorithms for aligning sequential LiDAR scans.
 - Utilizes Iterative Closest Point (ICP) and Correlative Scan Matching for precise map building.
- Pose Graph Optimization:
 - Constructs a pose graph where each node represents a robot pose.
 - Implements Loop Closure Detection to correct drift by identifying previously visited locations.
 - Applies Graph-Based Optimization techniques (e.g., SPA, GTSAM) for global map consistency.
- Map Generation:
 - Produces a 2D occupancy grid map representing obstacles and free space.
 - Allows adjustable map resolution and update rates to suit different environments.

Overall System Architecture

2D LIDAR

Odometer

Onboard computer

Sensor Integration

- Re-pin power wire to make it compatible with the robot
- Mount using 3D printed component

Methodologies

Localization

- Particle Filter Mechanism:

 - map.
- Sensor Integration:
 - weights.
 - modeling.
- Adaptive Resampling:
 - efficiency.
- The robot can localize itself in a room with less than 21% error.

Navigation

- Navigation Stack: Nav2 for comprehensive path planning and control.
- Global Path Planning:
- Local Path Planning:
 - avoidance and path following.
 - environment.
- Costmap Management:
 - generated map.
 - obstacles.
 - footprint and safety requirements.
- **Recovery Behaviors:**
 - navigation is impeded.
 - the current trajectory.

• Algorithm Used: Adaptive Monte Carlo Localization (AMCL) utilizing particle filters.

• Maintains a set of particles representing possible robot poses.

• **Prediction Step:** Updates particles based on motion models using odometry data. • Update Step: Adjusts particle weights by comparing LiDAR data to the existing

LiDAR Data: Compares observed scans with predicted scans to redefine particle

Odometry Data: Provides motion estimates for particle prediction and movement

• Dynamically adjusts the number of particles using **KLD-sampling** for computational

Concentrates computational resources on the most probable robot locations.

• Utilizes A* or Dijkstra's Algorithm to compute optimal paths on the global costmap. Considers obstacle costs and robot kinematics in path formulation.

• Implements the **Dynamic Window Approach (DWA)** for real time obstacle Calculates feasible velocity commands within the robot's dynamic constraints and

Global Costmap: Represents the static environment derived from the SLAM-

Local Costmap: Continuously updated with live sensor data to account for dynamic

Obstacle Inflation: Adds safety buffers around obstacles based on the robot's

Clearing Rotations: Performs in-place rotations to reassess surroundings when

Re-planning: Automatically generates new paths if obstacles are detected along

Figure 5: Screenshot of a Gazebo Simulation of the robot in a simulated environment

REFERENCES

1 *Husky user manual*. Clearpath Robotics Documentation. (2024, March 12). https://docs.clearpathrobotics.com/docs/robots/outdoor robo <u>ts/husky/user manual husky/</u> **2** Hokuyo UST10-LX User Manual.

LEARN BY DOING Noyce School of

Applied Computing **COLLEGE OF ENGINEERING**

Figure 3: Design of the 3D printed Mount used to mount the LiDAR.

Figure 4: RVIZ environment where the map is displayed. The map being displayed includes the costmap zones in blue and purple.

Acknowledgements

This research was funded by the Noyce School of Applied Computing and the Electrical Engineering Department at Cal Poly.