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Localization

Motivation

GPS insufficient for multi-agent systems
Localization algorithms use relative pose
measurements

Need a solution for measurement noise and
consensus between agents

Background

Undirected graph of n nodes (agents)
Sensing model for measurements:

z(k) = Hk)x(k) + v(k)
Target with discrete time model dynamics:

x(k+1) = Ax(k) + Bw(k)

Noise, v and w, follow zero-mean white
Gaussian noise
Discrete time implementation of a Kalman
consensus filter [1]
Local data aggregation:
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Methodology

Distributed Kalman filtering algorithm [1]
o Filters measurement noise

oAgents determine own pose

Python simulation of mobile agents

To be addressed in future work:
oIncrease number of agents

o Time-varying adjacency matrices

o Vary agent measurement noise

Position estimates
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Figure 1. Simulation of distributed Kalman filtering algorithm on 3 mobile agents.
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Figure 2. Root mean square error (RMSE) of simulated agent position
estimates.

Iterations 5 10 20 50 100 | 150 | 200
Agent 1 RMSE (m)|1.528 11.370/0.994|0.6740.504|0.420|0.368
Agent 2 RMSE (m)|1.707 | 1.4631.210|0.861[0.669|0.563 | 0.501
Agent 3 RMSE (m)[1.470|1.064|0.826 |0.6210.462|0.383|0.355

(a)

Percentage of iterations where RMSE > 1.0m
Agent 1 9.5%
Agent 2 16.0%
Agent 3 6.0%

(b)

Figure 3. Summarizing data table of Figure 2: (a) RMSE data and (b)
additional characterization of algorithm performance.
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Figure 4. Experimentally determined noise limits shown as covariance
matrices
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Formation Control

Motivation

Most current formation control techniques for multi-
agent systems are tedious and time consuming.

Autonomous formation control based on localization is
more flexible and robust.

Background

Network of n rigid bodies in 3D space

Reynold's Flocking Principles: cohesion, separation,
alighment
Rigid body pose:

gij = gfwf?, gw]
Rigid Body velocity:

Viri = [(Ugi) " (wii) '] € RO
Rigid body motion dynamics:

(pij, %) € SE(3)
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(a) Pose synchronization. (b) Collision.

Methodology

Distributed Control Approach:

o Localization allows pose information to be derived
from neighbors

o Each agent adjusts itself in relevance to its neighbors

Zeroing Control Barrier Function For Collision Avoidance:
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Conditions for Pose Synchronization'
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Quadratic Problem Formulation: The Control Objective
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Theoretical Guarantees.

o Pose synchronization achieved as much as possible with
collision avoidance

o Formation robust to swarm movement

Extensions:

o Flocking with desired behavior (e.g. moving towards a
beacon

o Modification for 2D ground vehicles with
nonholonomic constraints
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Figure 5: Linear formation with circular initialization some distance away.

Future Work

* Address algorithm limitations

 ROS Humble and Gazebo simulations

» Turtlebot and UAV drone implementation

» Collision avoidance for environmental
obstacles

« Agent loss independence and formation
recovery

* Large-scale swarms

« Extension to swarm tasks
o Follow target or beacon in formation
o Environmental or object manipulation
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