Localization and Formation Control For Multi-Agent Systems

Dmitri Dobrynin, Indigo Garcia Advisor: Dr. Siavash Farzan

Background

- Undirected graph of n nodes (agents)
- Sensing model for measurements: z(k) = H(k)x(k) + v(k)
- Target with discrete time model dynamics: x(k+1) = Ax(k) + Bw(k)
- Noise, v and w, follow zero-mean white Gaussian noise
- Discrete time implementation of a Kalman consensus filter [1]
- Local data aggregation:

$$y_i = \sum_{j \in J_i} H_j^T R_j^{-1} z_j \qquad S_i = \sum_{j \in J_i} H_j^T R_j^{-1} H_j$$

Kalman-Consensus estimate:

$$M_{i} = (P_{i}^{-1} + S_{i})^{-1}$$
$$\hat{x}_{i} = \bar{x}_{i} + M_{i}(y_{i} - S_{i}\bar{x}_{i}) + \epsilon M_{i}\sum_{j \in N_{i}} (\bar{x}_{j} - \bar{x}_{i})$$

• Update state:

$$P_i \leftarrow AM_iA^T + BQB^T$$

 $\bar{x}_i \leftarrow A\hat{x}_i$

Methodology

- Distributed Kalman filtering algorithm [1] \circ Filters measurement noise • Agents determine own pose
- Python simulation of mobile agents
- To be addressed in future work: \circ Increase number of agents • Time-varying adjacency matrices • Vary agent measurement noise

Agent Agent Agent

Electrical Engineering Department, California Polytechnic State University, San Luis Obispo, CA

Figure 1. Simulation of distributed Kalman filtering algorithm on 3 mobile agents.

estimates.

erations	5	10	20	50	100	150	200
1 RMSE (m)	1.528	1.370	0.994	0.674	0.504	0.420	0.368
2 RMSE (m)	1.707	1.463	1.210	0.861	0.669	0.563	0.501
3 RMSE (m)	1.470	1.064	0.826	0.621	0.462	0.383	0.355
			(a)				

	Percentage of iterations where RMSE > 1.0m
Agent 1	9.5%
Agent 2	16.0%
Agent 3	6.0%
	(b)

Figure 3. Summarizing data table of Figure 2: (a) RMSE data and (b) additional characterization of algorithm performance.

	Measurement noise	System noise
Case 1	$R = 10 \cdot I_2$	$Q = 10 \cdot I_2$
Case 2	$R = 10 \cdot I_2$	$Q = 10 \cdot I_2$

Background

Methodology

- $V_{wi} \in \mathbb{R}^{\circ}, o_i \geq 0$ • Theoretical Guarantees: • Pose synchronization achieved as much as possible with collision avoidance • Formation robust to swarm movement Extensions: • Flocking with desired behavior (e.g. moving towards a beacon
 - Modification for 2D ground vehicles with
 - nonholonomic constraints

Figure 4. Experimentally determined noise limits shown as covariance matrices

Formation Control

Motivation

 Most current formation control techniques for multiagent systems are tedious and time consuming.

Autonomous formation control based on localization is more flexible and robust.

Network of n rigid bodies in 3D space

Reynold's Flocking Principles: cohesion, separation, alignment

Rigid body pose: $g_{ij} := g_{wi}^{-1} g_{wj} = (p_{ij}, e^{\xi \theta_{ij}}) \in SE(3)$ Rigid Body velocity: $V_{wi}^b = [(v_{wi}^b)^{\mathsf{T}} \ (\omega_{wi}^b)^{\mathsf{T}}]^{\mathsf{T}} \in \mathbb{R}^6$

Rigid body motion dynamics:

(b) Collision.

Distributed Control Approach:

• Localization allows pose information to be derived from neighbors

• Each agent adjusts itself in relevance to its neighbors • Zeroing Control Barrier Function For Collision Avoidance:

$$p_{ij}^{\mathrm{T}} v_{wi}^{b} \le k_{c} (\|p_{ij}\|^{2} - D_{c}^{2}) \ \forall \ j \in \mathcal{N}_{di}, \ k_{c} > 0$$

Conditions for Pose Synchronization:

$$\left\| \sum_{i \in \mathcal{N}_i} p_{ij}^{\mathsf{T}} v_{wi}^b \ge k_p \right\| \left\| \sum_{j \in \mathcal{N}_i} p_{ij} \right\|^2 = \left\| \sum_{j \in \mathcal{N}_i} (\log(e^{\hat{\xi}\theta_{ij}})^{\vee})^{\mathsf{T}} \omega_{wi}^b \ge k_e \right\| \left\| \sum_{j \in \mathcal{N}_i} \log(e^{\hat{\xi}\theta_{ij}})^{\vee} \right\|$$

• Quadratic Problem Formulation: The Control Objective

$$V_i^* = \arg\min_{V^b \in \mathbb{R}^6, \delta > 0} (V_{wi}^b)^{\mathrm{T}} V_{wi}^b + \delta_i^2$$

Acknowledgements

References

Figure 4: Circular formation with concentric initialization

Future Work

- Address algorithm limitations ROS Humble and Gazebo simulations
- Turtlebot and UAV drone implementation Collision avoidance for environmental
- obstacles
- Agent loss independence and formation recovery
- Large-scale swarms
- Extension to swarm tasks
- Follow target or beacon in formation
- Environmental or object manipulation
- This research was funded by the Electrical Engineering Department at Cal Poly.
- 1 R. Olfati-Saber, "Distributed Kalman filtering for sensor networks," 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007, pp. 5492-5498.
- 2 Ibuki, T., Wilson, S., Yamauchi, J., Fujita, M., & Egerstedt, M. (2020). Optimization-based distributed flocking control for multiple rigid bodies. IEEE Robotics and Automation Letters, 5(2), 1891-1898.
- **3** C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," Comput. Graph., vol. 21, no. 4, pp. 25-34, Jul. 1987.